
Paper TU-12

- 1 -

How Regular Expressions Really Work
Jack N Shoemaker, Greensboro, NC

ABSTRACT
Regular expressions are a powerful and ubiquitous tool for
manipulating text and data employed by many Unix editors and
utilities like sed, awk, perl, vi, and emacs. This paper is divided
into two parts. So the reader can begin to understand how regular
expressions work in general, the first part will describe the basic
parts of a regular expression: character classes, meta-characters,
quantifiers, grouping, and anchoring. The second part will focus
on the specific SAS® implementation using a real-life example
culled from a SAS-L discussion list thread. </P>

INTRODUCTION
This paper is not intended to be a comprehensive overview and
tutorial about regular expressions. For that the reader is directed
to the book referenced at the end of this paper in the bibliography
section. Rather, the aim of this paper is to provide the SAS
programmer with a working knowledge about the structure,
syntax, and lexicon of regular expressions so that the SAS RX
functions may be used with confidence and efficiency.

Regular expressions provide a mechanism for describing
character-string patterns. A host language, like SAS, uses these
patterns to match and perhaps change or delete the character
string found during the pattern search. Consider a common PC
task – locating all the SAS programs in a particular folder. From
the command prompt you would type something like ‘dir *.sas’.
Note the use of the asterisk. You have employed the wild-card
character that means match any file name. The ‘.sas’ part of the
‘dir’ command is taken literally to mean files with an extension of
‘sas’. So, the argument to the dir command is made up of two
pieces – a meta-character that has special meaning and a string
literal that is interpreted literally. Though much more powerful
than DOS wild-card characters, regular expressions are
essentially the same thing – a form of syntax that allows you to
express a variety of string patterns in a short and compact form.
In this respect, regular expressions are a mini programming
language devoted exclusively to the task of pattern matching.

WHAT’S SO REGULAR ABOUT REGEX?
The term regular expression comes from models described in
formal algebra as regular sets. If you are mathematically inclined
and would like to know more about the mathematics behind these
theories do a Google search on Stephen Kleene. Regular
expressions (or regex, for short) remained primarily in theoretical
circles until 1968 when Ken Thompson published the first
computational algorithms for regular expressions. The point is to
not get too bogged down with the technical meaning of regular.
Just think of regex as mini programming language contained
within a larger host language like Perl, Python, or SAS.

REAL-LIFE EXAMPLE
Consider this real-life example posted on SAS-L a while back. A
medical researcher had notes and observations about sick kids.
The researcher wished to identify all children who had a sore
throat. In the relevant column that contained this information, a
sore throat could appear as ‘ST’, ‘S.T.’, ‘sore throat’, ‘Sore
Throat’, ‘ST.’, or a variety of other permutations on this theme. A
number of clever solutions were proposed by the SAS-L
community involving compressing out the periods and spaces,
and using the indexw() and scan() functions to locate and extract
the desired tokens. The researcher finally settle on a regex
solution using the rxmatch() and rxparse() functions instead.

Keep this example in mind as we take a quick tour of regex
syntax.

THE PARTS OF A REGULAR EXPRESSION

There are five basic parts to regular expressions that you need to
understand in order to make regular expressions work for you.
Those parts are:

• meta-characters – characters which have special
meaning in the pattern akin to the DOS wild-care
characters for filename pattern matching

• character classes – sets of characters any one of which
will match the pattern

• quantifiers – a meta-character, that indicates how many
times a particular sub-pattern will repeat

• groupers – a meta-character used in conjunction with
quantifiers to delineate the pattern to repeat

• anchors – a meta-character specifying a line or word
boundary

A careful reader might notice that everything appears to be just a
meta-character or a character class. True though this is,
quantifiers, groupers, and anchors are different enough to
deserve a special mention on their own.

Each of these basic parts of the regular expression will be
described below. Bear in mind that each host language has its
own dialect of regular expression. For the purposes of this paper
we will focus on those elements thought to be almost universal.
Notwithstanding, before using a regular expression you should
always consult your host documentation for any nuances or
improvements on the basic syntax.

META CHARACTERS

The meta character to match any one character is a dot ‘.’. So the
regular expression ‘s.s’ will match ‘sas’, ‘sos’, or any other three-
letter string that starts and ends with an ‘s’.

The meta character to match one pattern or the other is the pipe
character. So the expression

‘this|that’

will match either the string ‘this’ or the string ‘that’.

The meta characters used to group patterns into a single unit are
the parentheses. For example, the expression

‘I want (this|that)’

will match ‘I want this’ or ‘I want that’.

CHARACTER CLASSES

Character classes are similar to the dot meta character except
that the character class specifies a range of possible matches.
That is the pattern will match any one of the characters listed in
the character class. The list of characters is placed inside square
brackets. For example, in the example above, the indication of a

2

sore throat may appear as ‘st’ or ‘ST’ among various other
constructions. To write a regular expression to match either ‘st’
or ‘ST’ we would write

‘[Ss][Tt]’

This is actually two character classes – ‘[Ss]’ and ‘[Tt]’. This
regular expression will match any two-character string that starts
with ‘S’ or ‘s’ and ends with ‘T’ or ‘t’. Note that this expression will
also match ‘sT’ and ‘St’. That may be an added side benefit or
cause for additional specification depending on the details of your
application.

Now consider a related task. You have a list of SAS variable
names to check. As you know, SAS variable names may not
start with a number. In regular expression thinking you want a
negated character class. That is, a character class that matches
any character not listed in the character class. The syntax for
negating a character class is to place a caret character (‘^’) as
the first character which the character class. To write a regular
expression to match any character string that does not start with
a number, you would write

‘[^0123456789].*’

Note that this regular expression contains a quantifier (‘*’) that we
will discuss in the next section. More importantly, this regular
expression is not sufficient to check for valid SAS variable names
because it would allow the first character to be ‘!’, ‘@’, ‘#’, or any
other non digit for that matter. The point is that a character class
is negated if the first character is a caret. If a caret appears
anywhere else in the string, then it is treated as a normal member
of the character class list. The reader may wish to consider what
this regular expression would mean

‘[^^]’

The answer is that this will match any character except a caret.
Matching any single digit is a fairly common task. You might
wonder if there is some short hand for specifying any number, or
for that matter any letter. The answer is ‘yes’ with the following
caveat. The area of character-class notation is one where syntax
varies wildly across host languages. SAS for example offers a
dizzying array of short hands for character classes. You may find
these handy and convenient; however, give some consideration
to portability to other host languages before becoming overly
enamored with the SAS character classes. In any event here are
some short hands that are bound to work in almost any host
language that supports regular expressions.

• Any digit – ‘[0-9]’
• Any letter – ‘[a-z]’
• Any capital letter – ‘[A-Z]’

The negation character listed above is a character-class meta
character. Note in the bulleted list above we have introduced
another character-class meta character, the dash (‘-‘). Inside a
character class, the dash indicates a range of characters. What
happens if the first character in a character class is a dash? Well
it can’t possibly indicate a range, so it is just treated as a member
of the character class.

So character classes have their own set of meta characters. And
the rules governing these meta characters are completely
different inside and outside the character class. Let’s consider
another example to drive this point home. We would like to
match the date of this paper’s presentation at SUGI 28 – March
31, 2003. For the sake of this example let’s assume that the date
is expressed as ‘03/31/2003’, ’03-31-2003’, or ’03.31.2003’. That
is the month, day, and year are separated by a forward slash,
dash, or dot. From the discussion of the dot meta character

above you might be tempted to use this simple regular
expression.

’03.31.2003’

This will certainly match the three desired date formats above;
however since the dot meta character matches any character it
will also match strings like ‘03x3182003’. We can improve the
regular expression by considering the desired pattern as three
character literals – ‘03’, ‘31’, and ‘2003’ connected by a single
character in the class ‘-./’. For example,

‘03[-./]31[-./]2003’

Note that the dash character is the first character in the character
class. If it were not the first character, it would have been treated
as the character-class meta character indicating a range of
characters. This is not what we would have wanted in this
situation. Next consider the dot character. Isn’t this the meta
character meaning ‘match any single character’. Yes it is if
outside a character class. Inside a character class, the dot
character is just like any other character.

At first the regular expression listed above may seem a bit odd
and impenetrable. However, once you sit back and break the
regular expression into its components, the meaning becomes
clearer. Drawing on the mini programming language analogy,
this is similar to reviewing a new program for the first time. The
intent and flow of the program becomes clearer once you break it
down into discrete parts.

QUANTIFIERS

Our discussion of negated character classes introduced the
asterisk character as a meta character know as a quantifier. A
quantifier specifies how many times the immediately preceding
character or sub-expression should be repeated. There are only
three quantifiers

• ? match zero or one
• * match zero or more
• + match one or more

That’s it. So the expression from above ‘.*’ means match zero
or more of any character. Consider the task of matching a time
stored in 24-hour format. That is, HH:MM, where HH, may or
may not have a leading zero.

Let’s attack the minutes portion first since that’s easier and will
not require quantifiers. From our previous discussion on
character classes and short hands, we can view the minutes
portion of the time as a two-character string which begins with the
digit 0 through 5 followed by any digit 0 through 9. We can form
the corresponding regular expression by translating the sentence
above into regex.

‘[0-5]’[0-9]’

The hours portion of the time requires a bit more thought. One
way of describing the hours portion is an optional 0 followed by a
0 through 9 or a 1 followed by a 0 through 9 or a 2 followed by a 0
through 3. That’s three alternatives. The first alternative involves
an optional leading 0 character. Using the ? quantifier we would
write this as

‘0?[0-9]’

That is, zero or more 0 characters followed by a single character
from the class of characters 0 through 9. The second alternative
is

3

‘1[0-9]’

That is, a 1 character followed by a single character from the
class of characters 0 through 9.

The final alternative is

‘2[0-3]’

That is, a 2 character followed by a single character from the
class of characters 0 through 3.

So putting these three parts together we would have

‘0?[0-9]|1[0-9]|2[0-3]’

Note that we can describe the first two alternatives as a single
alternative. Namely, an optional 0 or 1 character followed by a
single character from the class of characters 0 through 9.
Translating this sentence into to regex we have

‘[01]?[0-9]

So we can write the entire expression as just two alternatives as
follows:

‘[01]?[0-9]|2[0-3]’

There is another way to view this problem as a choice between
two alternatives. An optional 0 or 1 character followed by a single
character from the class 4 through 9, or an optional 0, 1, or 2
character followed by a single character from the class 0 to 3.
Translating to regex we have

‘[01]?[4-9]|[012]?[0-3]’

In all these cases we have used the question-mark quantifier to
specify zero or one occurrence of the character immediately
preceding the quantifier. Note as well the process we have used
to create the regular expressions. First, we write out the pattern
in standard English, then we translate the sentence into regex.
Of course it helps to be in a regex frame-of-mind when writing out
these sentences.

GROUPERS

We have seen an example of the grouping meta characters
previously in the ‘I want this’ or ‘I want that’ example. We can
use the grouping meta characters to complete our example from
above. We now know how to construct a regular expression for
the hours portion of the time and the minutes portion of the time.
All that is left is to bring these two sub-expressions together and
join them with a colon.

‘([01]?[0-9]|2[0-3]):[0-5][0-9]’

The parentheses are used to group the hours sub-expression.
The colon is just a character literal in the regular expression
string. Finally the two character classes [0-5] and [0-9] complete
the specification for the time format. Staring at the expression
above without context might make you think you had encountered
some memory overflow error that had caused your computer to
begin echoing all manner of garbage to the screen. Once you
knew that this expression was a regular expression you could
begin the task of breaking it down into its components and begin
to understand what was intended.

ANCHORS

Most implementations of regular expressions work with lines of
text. So, there is a natural need to specify the beginning of a line
and the end of a line. Since these concepts are really cursor
positions and not actual characters, there are two meta
characters used to indicate each position.

• Beginning of line - ^
• End of line - $

We discussed the meaning of the caret character previously in
the discussion about negated character classes. We concluded
that discussion with the statement that the position of a meta
character inside or outside of a character classes changes the
meaning of the meta character. It is worth repeating that a caret
outside a character class which is the first character in a regular
expression means ‘match the start of a line’, while if the caret
appears elsewhere it means just match a caret character.

Since most SAS applications will operate on fields or columns
and not lines, we won’t devote any more attention to these meta
characters. In addition to line boundaries, many modern version
of regular-expression processors contain notation for the
beginning and ending of words. Not surprisingly, SAS has a
number of these; however, since this first section was meant to
be a universal introduction to regular expression syntax, we won’t
go into those details at the moment.

With this brief introduction under our belts, let’s turn our attention
to a real-life problem and see how we can use the SAS
implementation of regular expressions to solve it.

WHO HAS A SORE THROAT?

A researcher at Children’s Hospital in Boston wanted to locate all
records indicating a sore throat. Here is an excerpt from her
SAS-L posting

I'm trying to pull out all records where a
character variable has the value ST. This is an
abbreviation for sore throat and here are some
examples of how it might appear.
 256 N/A EARACHE,ST
166084 ST
166099 ST URI SX
161846 ST, LARYNGITIS
161848 ST,PROD COUGH
160700 FEVER, ST
161973 FEVER ST
135329 VIRAL SX ST

Furthermore, she did not want to locate false positives like these

2927 CHEST PAIN
2950 L BREAST LUMP
2964 NEEDLE STICK
2988 WRIST PAIN
3000 CAST EVAL

In other words, the task is more difficult than just searching for
the string ‘ST’ anywhere on the line. She did not want to locate
occurrences of ‘ST’ when ‘ST’ was part of some other word like
chest, breast, stick, wrist, or cast.

The first set of responses suggested using some combination of
the translate() indexw() functions to search for blank-delimited
words of the form ‘ST’. Here is a typical suggestion from that
category.

y = indexw(tranwrd(word, ',' , ' '), 'ST');

4

In other words, change commas to blanks using tranwd() and
then use indexw() to locate the ‘ST’ tokens. The resulting value
of y would hold the starting position of ‘ST’ in the original WORD
variable. If y were non-zero, you had a match.

This solution wouldn’t work if some other piece of punctuation
needed to be considered, like ‘/’ or ‘.’, but is easily changed to
handle these situations.

USING SAS RX FUNCTIONS

The researcher wanted a regular-expression solution. To use
regular expressions in SAS, there are primarily two functions to
keep in mind:

Rxparse() – converst a regular expression into some sort of
internal SAS representation
Rxmatch() which uses the result of rxparse() and a target string to
find a match

Although a discussion of the SAS data step and how it handles
variable initialization is beyond the scope of this paper, suffice it
to say that on each loop of the data step, all data-step variables
are set to missing and then assigned values as part of the
subsequent program logic. It is typical, that you will use the
same regular expression for the entire duration of the data step,
so it saves time to just call rxparse() once to parse the regular
expression and turn it into its internal representation. To instruct
SAS not to reset this result to missing with each loop of the data
step, you use the RETAIN statement. So a typical data-step
structure using regular expressions looks something like this:

data abc;
 set def;
 /* retain value of rx */
 retain rx;
 /* assign value on first loop */
 if _N_ = 1 then
 rx = rxparse(/* regular expression */);
 …
 /* use rxmatch() to find sub-string */
 hit = rxmatch(rx, string-to-search);
 run;

Here was the researcher’s first attempt at solving the problem
using regular expressions.

rx = rxparse("' ST'|'/ST'|',ST'|'ST '|
 'ST\'|'ST/'|'ST,'|'.ST'|'S.T.'");
pos = rxmatch(rx, complaint);

What we have is a long list of alternatives – nine in all – being
checked in a data-step variable called ‘complaint’. This was little
better than just searching for the string ‘ST’ since CHEST,
WRIST, etc. would still be matches using the above.

The next iteration was to use negated character classes to make
sure that ‘ST’ had clear space on both sides. The following was
suggested by one of the SAS-L respondents.

rx=rxparse("^'0-9A-Za-z' ST ^'0-9A-Za-z'");

The idea was to not have ‘ST’ appear with a number or letter
before it or after it. Note the syntax of this regular expression.
Character classes are enclosed within single quotes; the negation
operator happens outside these single quotes – much like any
SAS negation operator; and, the whole thing appears within
double quotes.

This solution still doesn’t find patterns like ‘S.T.’ or ‘S/T’.

Let’s write a sentence describing what we want to find and then
translate that sentence into SAS regex. We want to find words
that start with ‘S’, end with ‘T’ and are either only two characters
long, or have only a comma or period in between the ‘S’ and ‘T’.

In the more generalized discussion of regular expressions, I
noted that in addition to line-begin and line-end markers, many
flavors of regular-expression processors contain anchors for word
boundaries. SAS is no exception. The prefix ‘$p’ instructs SAS
to look for words that start with the following character. The suffix
‘$s’ instructs SAS to look for words that end with the following
character. So the expression

“$p S T $s”

will match any two-character word which begins with an ‘S’ and
ends with a ‘T’. In order to account for the embedded
punctuation, we can supply an optional character class

“[$’.,’]

in between the S and the T in the previous expression. The final
regular expression pattern that the researcher felt solved her
problem looked like this

“$p S [$’.,’] T $s”

CONCLUSION

The good news is that SAS has a regular expression processor
and that it may be used to solve a variety of pattern-matching
problems that may not be as easy to do or understand otherwise.
Using a process of writing down the problem in English and then
translating to a regular expression often leads to the best
solution. The bad news is that the SAS regular expression syntax
is different enough from standard regular expression syntax that it
may take users of other regular-expression processors a moment
to get used to. Version 9 of the SAS system has a separate set
of “P” regular expression functions which pass the regular-
expression task out to an external Perl processor. This will
certainly make the syntax more in line with other utilities – like
Perl; however, the ultimate performance penalty, if any, remains
to be tested.

REFERENCES
Friedl, Jeffery E.F., Mastering Regular Expressions. Sebastopol,
CA: O’Reilly & Associates, Inc., 1997.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Jack N Shoemaker
 Greensboro, NC
 shoe@theworld.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

